An intelligent assistant for working with regulatory documents based on ontological modeling and RAG Научная публикация
| Конференция |
IEEE XVII International Conference on Actual Problems of Electronic Instrument Engineering 14-15 нояб. 2025 , Новосибирск |
||||||
|---|---|---|---|---|---|---|---|
| Сборник | IEEE XVII International Conference on Actual Problems of Electronic Instrument Engineering (IEEE APEIE 2025) Сборник, 2025. |
||||||
| Вых. Данные | Год: 2025, | ||||||
| Ключевые слова | Regulatory documents, intelligent assistant, ontological modeling, semantic search, Retrieval-Augmented Generation, multi-agent systems, compliance automation | ||||||
| Авторы |
|
||||||
| Организации |
|
Информация о финансировании (2)
| 1 | Министерство науки и высшего образования РФ | 000000D730324P540002 |
| 2 | Новосибирский государственный университет | 70-2023-001318 |
Реферат:
The increasing volume of regulatory
documentation in construction and engineering complicates
decision-making and raises the risk of errors and noncompliance.
Existing search systems fail to provide sufficient
semantic understanding of user needs, while large language
models suffer from hallucinations and incomplete answers.
This paper presents a hybrid intelligent assistant that
integrates retrieval-augmented generation, ontological
modeling, and multi-agent architecture to address these
limitations. The system extracts entities and situations from
regulatory documents to build an ontological domain model,
enabling both semantic interpretation and automated
consistency verification of generated responses. Vector
similarity measures are combined with concept-level
ontological relationships to improve retrieval accuracy. A
multi-agent architecture ensures modularity and scalability,
supporting document analysis, query history tracking,
personalized response generation based on user context, and
precise reference linking to primary sources. The proposed
approach is evaluated in the construction domain, where
practitioners must simultaneously consider standards at
multiple regulatory levels. The practical contribution lies in
reducing compliance costs and risks while increasing efficiency
in handling complex multi-level regulatory frameworks.
Future research will focus on cross-domain implementation
and comprehensive evaluation of system performance.
Библиографическая ссылка:
Grekhova A.
, Palchunov D.
, Shishkin A.
, Zaitsev A.
An intelligent assistant for working with regulatory documents based on ontological modeling and RAG
В сборнике IEEE XVII International Conference on Actual Problems of Electronic Instrument Engineering (IEEE APEIE 2025). 2025.
An intelligent assistant for working with regulatory documents based on ontological modeling and RAG
В сборнике IEEE XVII International Conference on Actual Problems of Electronic Instrument Engineering (IEEE APEIE 2025). 2025.
Идентификаторы БД:
Нет идентификаторов
Цитирование в БД:
Пока нет цитирований