Sciact
  • EN
  • RU

Nonlocal problems for the generalized Boussinesq–Love equation Тезисы доклада

Конференция Russian-Chinese Conference "Differential and Difference Equations"
31 окт. - 6 нояб. 2025 , Новосибирск, НГУ
Сборник Russian-Chinese Conference "Differential and Difference Equations". Abstracts
Сборник, Novosibirsk State University. Novosibirsk.2025. 160 c. ISBN 978-5-4437-1832-3.
Вых. Данные Год: 2025, Страницы: 81 Страниц : 1
Авторы Kozhanov A.I. 1 , Wang M. 2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0008

Реферат: This work investigates the solvability of nonlocal boundary value problems for the generalized Boussinesq–Love differential equation [1–3] in anisotropic S. L. Sobolev spaces. A distinctive feature of the studied problems is that their nonlocal conditions represent Samarskii–Ionkin type conditions with respect to the temporal (distinguished) variable. The main objective of this work is to prove existence and uniqueness theorems for regular solutions of the considered problems – specifically, solutions possessing all generalized derivatives in the S. L. Sobolev sense that appear in the corresponding equation.
Библиографическая ссылка: Kozhanov A.I. , Wang M.
Nonlocal problems for the generalized Boussinesq–Love equation
В сборнике Russian-Chinese Conference "Differential and Difference Equations". Abstracts. – Novosibirsk State University., 2025. – C.81. – ISBN 978-5-4437-1832-3.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований