Sciact
  • EN
  • RU

Simple and semisimple finite-dimensional Novikov algebras and their automorphisms Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2025, Volume: 689, Pages: 1-26 Pages count : 26 DOI: 10.1016/j.jalgebra.2025.09.017
Authors Pozhidaev Alexandr 1 , Zhelyabin Viktor 1
Affiliations
1 Sobolev Institute of Mathematics of SB RAS, Novosibirsk, Russia

Funding (1)

1 Russian Science Foundation 25-41-00005

Abstract: We prove that every finite-dimensional semisimple Novikov algebra is the direct sum of simple algebras, and every finite-dimensional simple Novikov algebra over an arbitrary field of characteristic p > 0 is the Gelfand-Dorfman construction of an associative commutative differentiably simple algebra. The description of the automorphisms of such simple Novikov algebras over an algebraically closed field is reduced to the description of some special automorphisms of the initial associative commutative algebras.
Cite: Pozhidaev A. , Zhelyabin V.
Simple and semisimple finite-dimensional Novikov algebras and their automorphisms
Journal of Algebra. 2025. V.689. P.1-26. DOI: 10.1016/j.jalgebra.2025.09.017 WOS Scopus
Dates:
Submitted: Mar 5, 2025
Published online: Oct 10, 2025
Identifiers:
Web of science: WOS:001608427400001
Scopus: 2-s2.0-105019679943
Citing: Пока нет цитирований
Altmetrics: