Simple and semisimple finite-dimensional Novikov algebras and their automorphisms Full article
| Journal |
Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X |
||
|---|---|---|---|
| Output data | Year: 2025, Volume: 689, Pages: 1-26 Pages count : 26 DOI: 10.1016/j.jalgebra.2025.09.017 | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Russian Science Foundation | 25-41-00005 |
Abstract:
We prove that every finite-dimensional semisimple Novikov algebra is the direct sum of simple algebras, and every finite-dimensional simple Novikov algebra over an arbitrary field of characteristic p > 0 is the Gelfand-Dorfman construction of an associative commutative differentiably simple algebra. The description of the automorphisms of such simple Novikov algebras over an algebraically closed field is reduced to the description of some special automorphisms of the initial associative commutative algebras.
Cite:
Pozhidaev A.
, Zhelyabin V.
Simple and semisimple finite-dimensional Novikov algebras and their automorphisms
Journal of Algebra. 2025. V.689. P.1-26. DOI: 10.1016/j.jalgebra.2025.09.017 WOS Scopus
Simple and semisimple finite-dimensional Novikov algebras and their automorphisms
Journal of Algebra. 2025. V.689. P.1-26. DOI: 10.1016/j.jalgebra.2025.09.017 WOS Scopus
Dates:
| Submitted: | Mar 5, 2025 |
| Published online: | Oct 10, 2025 |
Identifiers:
| Web of science: | WOS:001608427400001 |
| Scopus: | 2-s2.0-105019679943 |
Citing:
Пока нет цитирований