Simple and semisimple finite-dimensional Novikov algebras and their automorphisms Научная публикация
| Журнал |
Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X |
||
|---|---|---|---|
| Вых. Данные | Год: 2025, Том: 689, Страницы: 1-26 Страниц : 26 DOI: 10.1016/j.jalgebra.2025.09.017 | ||
| Авторы |
|
||
| Организации |
|
Информация о финансировании (1)
| 1 | Российский научный фонд | 25-41-00005 |
Реферат:
We prove that every finite-dimensional semisimple Novikov algebra is the direct sum of simple algebras, and every finite-dimensional simple Novikov algebra over an arbitrary field of characteristic p > 0 is the Gelfand-Dorfman construction of an associative commutative differentiably simple algebra. The description of the automorphisms of such simple Novikov algebras over an algebraically closed field is reduced to the description of some special automorphisms of the initial associative commutative algebras.
Библиографическая ссылка:
Pozhidaev A.
, Zhelyabin V.
Simple and semisimple finite-dimensional Novikov algebras and their automorphisms
Journal of Algebra. 2025. V.689. P.1-26. DOI: 10.1016/j.jalgebra.2025.09.017 WOS Scopus
Simple and semisimple finite-dimensional Novikov algebras and their automorphisms
Journal of Algebra. 2025. V.689. P.1-26. DOI: 10.1016/j.jalgebra.2025.09.017 WOS Scopus
Даты:
| Поступила в редакцию: | 5 мар. 2025 г. |
| Опубликована online: | 10 окт. 2025 г. |
Идентификаторы БД:
| Web of science: | WOS:001608427400001 |
| Scopus: | 2-s2.0-105019679943 |
Цитирование в БД:
Пока нет цитирований