Sciact
  • EN
  • RU

Estimates for solutions in one epidemic model with infinite distributed delay Научная публикация

Журнал Computational Mathematics and Modeling
ISSN: 1046-283X
Вых. Данные Год: 2026, Страницы: 1-17 Страниц : 17 DOI: 10.1007/s10598-025-09664-6
Ключевые слова Epidemic model · Delay differential equations · Infinite distributed delay · Equilibrium point · Asymptotic stability · Estimates for solutions · Attraction set · Lyapunov–Krasovskii functional
Авторы Skvortsova M.A. 1,2
Организации
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Информация о финансировании (1)

1 Институт математики им. С.Л. Соболева СО РАН FWNF-2022-0008

Реферат: In the paper we consider an epidemic model described by a system of differential equations with infinite distributed delay. The model consists of three equations, each of which describes changes in the numbers of susceptible individuals, infected individuals, and recovered individuals, respectively. The asymptotic stability of equilibrium points is studied, which correspond to the case of complete recovery of individuals and the case when infected individuals are always present in the system. Estimates for the initial numbers of individuals are indicated, in which they fully recover, or the number of infected individuals tends to a constant value. Estimates for solutions to the system are established, that characterize the rate of infection or the rate of recovery of the entire group of individuals. The results are obtained using Lyapunov–Krasovskii functionals.
Библиографическая ссылка: Skvortsova M.A.
Estimates for solutions in one epidemic model with infinite distributed delay
Computational Mathematics and Modeling. 2026. P.1-17. DOI: 10.1007/s10598-025-09664-6
Даты:
Поступила в редакцию: 9 нояб. 2025 г.
Принята к публикации: 4 дек. 2025 г.
Опубликована online: 21 янв. 2026 г.
Идентификаторы БД: Нет идентификаторов
Цитирование в БД: Пока нет цитирований
Альметрики: