Sciact
  • EN
  • RU

Formal integration of complete Rota-Baxter Lie algebras and Magnus expansion Full article

Journal Selecta Mathematica, New Series
ISSN: 1022-1824 , E-ISSN: 1420-9020
Output data Year: 2026, Volume: 32, Number: 2, DOI: 10.1007/s00029-026-01128-y
Tags Rota-Baxter Lie algebra · Post-Lie algebra · Formal integration · Rota-Baxter group · Brace · Magnus expansion
Authors Goncharov Maxim 1 , Kolesnikov Pavel 1 , Sheng Yunhe 2 , Tang Rong 2
Affiliations
1 Sobolev Institute of Mathematics, Acad. Koptyug ave. 4, Novosibirsk, Russia
2 Department of Mathematics, Jilin University, Changchun, 130012, Jilin, China

Funding (1)

1 Министерство науки и высшего образования РФ FWNF-2026-0017

Abstract: In this paper, first we revisit the formal integration of Lie algebras, which give rise to braces in some special cases. Then we establish the formal integration theory for complete Rota-Baxter Lie algebras, that is, we show that there is a Rota-Baxter group with the underlying group structure given by the Baker-Campbell-Hausdorff formula, associated to any complete Rota-Baxter Lie algebra. In particular, we use the post-Lie Magnus expansion to give the explicit formula of the Rota-Baxter operator. Finally we show that one can obtain a graded Rota-Baxter Lie ring from a filtered Rota-Baxter group.
Cite: Goncharov M. , Kolesnikov P. , Sheng Y. , Tang R.
Formal integration of complete Rota-Baxter Lie algebras and Magnus expansion
Selecta Mathematica, New Series. 2026. V.32. N2. DOI: 10.1007/s00029-026-01128-y WOS Scopus OpenAlex
Dates:
Submitted: Oct 24, 2024
Accepted: Nov 22, 2025
Published online: Feb 10, 2026
Identifiers:
Web of science: WOS:001685887200001
Scopus: 2-s2.0-105029729548
OpenAlex: W4394867896
Citing: Пока нет цитирований
Altmetrics: