Formal integration of complete Rota-Baxter Lie algebras and Magnus expansion Научная публикация
| Журнал |
Selecta Mathematica, New Series
ISSN: 1022-1824 , E-ISSN: 1420-9020 |
||||
|---|---|---|---|---|---|
| Вых. Данные | Год: 2026, Том: 32, Номер: 2, DOI: 10.1007/s00029-026-01128-y | ||||
| Ключевые слова | Rota-Baxter Lie algebra · Post-Lie algebra · Formal integration · Rota-Baxter group · Brace · Magnus expansion | ||||
| Авторы |
|
||||
| Организации |
|
Информация о финансировании (1)
| 1 | Министерство науки и высшего образования РФ | FWNF-2026-0017 |
Реферат:
In this paper, first we revisit the formal integration of Lie algebras, which give rise to braces in some special cases. Then we establish the formal integration theory for complete Rota-Baxter Lie algebras, that is, we show that there is a Rota-Baxter group with the underlying group structure given by the Baker-Campbell-Hausdorff formula, associated to any complete Rota-Baxter Lie algebra. In particular, we use the post-Lie Magnus expansion to give the explicit formula of the Rota-Baxter operator. Finally we show that one can obtain a graded Rota-Baxter Lie ring from a filtered Rota-Baxter group.
Библиографическая ссылка:
Goncharov M.
, Kolesnikov P.
, Sheng Y.
, Tang R.
Formal integration of complete Rota-Baxter Lie algebras and Magnus expansion
Selecta Mathematica, New Series. 2026. V.32. N2. DOI: 10.1007/s00029-026-01128-y WOS Scopus OpenAlex
Formal integration of complete Rota-Baxter Lie algebras and Magnus expansion
Selecta Mathematica, New Series. 2026. V.32. N2. DOI: 10.1007/s00029-026-01128-y WOS Scopus OpenAlex
Даты:
| Поступила в редакцию: | 24 окт. 2024 г. |
| Принята к публикации: | 22 нояб. 2025 г. |
| Опубликована online: | 10 февр. 2026 г. |
Идентификаторы БД:
| Web of science: | WOS:001685887200001 |
| Scopus: | 2-s2.0-105029729548 |
| OpenAlex: | W4394867896 |
Цитирование в БД:
Пока нет цитирований