Sciact
  • EN
  • RU

3-Vertices with fewest 2-neighbors in plane graphs with no long paths of 2-vertices Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2022, Volume: 345, Number: 8, Article number : 112904, Pages count : 5 DOI: 10.1016/j.disc.2022.112904
Tags 3-Path; Girth; Minimum degree; Plane graph; Structure properties; Tight description
Authors Borodin O.V. 1 , Ivanova A.O. 2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
2 Ammosov North-Eastern Federal University, Yakutsk, 677013, Russia

Funding (2)

1 Министерство науки и высшего образования РФ FSRG-2020-0006
2 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: Let g(k,t) be the minimum integer such that every plane graph with girth g at least g(k,t), minimum degree δ=2 and no (k+1)-paths consisting of vertices of degree 2, where k≥1, has a 3-vertex with at least t neighbors of degree 2, where 1≤t≤3. In 2015, Jendrol' and Maceková proved g(1,1)≤7. Later on, Hudák et al. established g(1,3)=10, Jendrol', Maceková, Montassier, and Soták proved g(1,1)≥7, g(1,2)=8 and g(2,2)≥11, and we recently proved that g(2,2)=11 and g(2,3)=14. Thus g(k,t) is already known for k=1 and all t. In this paper, we prove that g(k,1)=3k+4, g(k,2)=3k+5, and g(k,3)=3k+8 whenever k≥2.
Cite: Borodin O.V. , Ivanova A.O.
3-Vertices with fewest 2-neighbors in plane graphs with no long paths of 2-vertices
Discrete Mathematics. 2022. V.345. N8. 112904 :1-5. DOI: 10.1016/j.disc.2022.112904 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Sep 30, 2020
Accepted: Mar 18, 2022
Published online: Mar 30, 2022
Identifiers:
Web of science: WOS:000792690200009
Scopus: 2-s2.0-85127331871
Elibrary: 48423435
OpenAlex: W4220943406
Citing:
DB Citing
Scopus 1
Web of science 1
OpenAlex 1
Elibrary 1
Altmetrics: