3-Vertices with fewest 2-neighbors in plane graphs with no long paths of 2-vertices Научная публикация
Журнал |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2022, Том: 345, Номер: 8, Номер статьи : 112904, Страниц : 5 DOI: 10.1016/j.disc.2022.112904 | ||||
Ключевые слова | 3-Path; Girth; Minimum degree; Plane graph; Structure properties; Tight description | ||||
Авторы |
|
||||
Организации |
|
Информация о финансировании (2)
1 | Министерство науки и высшего образования РФ | FSRG-2020-0006 |
2 |
Министерство науки и высшего образования РФ Математический центр в Академгородке |
075-15-2019-1613, 075-15-2022-281 |
Реферат:
Let g(k,t) be the minimum integer such that every plane graph with girth g at least g(k,t), minimum degree δ=2 and no (k+1)-paths consisting of vertices of degree 2, where k≥1, has a 3-vertex with at least t neighbors of degree 2, where 1≤t≤3. In 2015, Jendrol' and Maceková proved g(1,1)≤7. Later on, Hudák et al. established g(1,3)=10, Jendrol', Maceková, Montassier, and Soták proved g(1,1)≥7, g(1,2)=8 and g(2,2)≥11, and we recently proved that g(2,2)=11 and g(2,3)=14. Thus g(k,t) is already known for k=1 and all t. In this paper, we prove that g(k,1)=3k+4, g(k,2)=3k+5, and g(k,3)=3k+8 whenever k≥2.
Библиографическая ссылка:
Borodin O.V.
, Ivanova A.O.
3-Vertices with fewest 2-neighbors in plane graphs with no long paths of 2-vertices
Discrete Mathematics. 2022. V.345. N8. 112904 :1-5. DOI: 10.1016/j.disc.2022.112904 WOS Scopus РИНЦ OpenAlex
3-Vertices with fewest 2-neighbors in plane graphs with no long paths of 2-vertices
Discrete Mathematics. 2022. V.345. N8. 112904 :1-5. DOI: 10.1016/j.disc.2022.112904 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: | 30 сент. 2020 г. |
Принята к публикации: | 18 мар. 2022 г. |
Опубликована online: | 30 мар. 2022 г. |
Идентификаторы БД:
Web of science: | WOS:000792690200009 |
Scopus: | 2-s2.0-85127331871 |
РИНЦ: | 48423435 |
OpenAlex: | W4220943406 |