A POINT-WISE CONDITION FOR THE ABSOLUTE CONTINUITY OF A FUNCTION OF ONE VARIABLE AND ITS APPLICATIONS Научная публикация
Журнал |
Владикавказский математический журнал (Vladikavkaz Mathematical Journal)
ISSN: 1814-0807 |
||
---|---|---|---|
Вых. Данные | Год: 2021, Том: 4, Номер: 23, Страницы: 41-49 Страниц : 9 DOI: 10.46698/m7572-3270-2461-v | ||
Ключевые слова | absolutely continuous function, Sobolev space, point-wise description | ||
Авторы |
|
||
Организации |
|
Реферат:
An absolutely continuous function in calculus is precisely such a function that, within the
framework of Lebesgue integration, can be restored from its derivative, that is, the Newton–Leibniz
theorem on the relationship between integration and differentiation is fulfilled for it. An equivalent
definition is that the the sum of the moduli of the increments of the function with respect to arbitrary
pair-wise disjoint intervals is less than any positive number if the sum of the lengths of the intervals is small
enough. Certain sufficient conditions for absolute continuity are known, for example, the Banach–Zaretsky
theorem. In this paper we prove a new sufficient condition for the absolute continuity of a function of
one variable and give some of its applications to problems in the theory of function spaces. The proved
condition makes it possible to significantly simplify the proof of the theorems on the point-wise description
of functions of the Sobolev classes defined on Euclidean spaces and Сarnot groups.
Библиографическая ссылка:
Vodopʹyanov S.K.
A POINT-WISE CONDITION FOR THE ABSOLUTE CONTINUITY OF A FUNCTION OF ONE VARIABLE AND ITS APPLICATIONS
Владикавказский математический журнал (Vladikavkaz Mathematical Journal). 2021. V.4. N23. P.41-49. DOI: 10.46698/m7572-3270-2461-v Scopus OpenAlex
A POINT-WISE CONDITION FOR THE ABSOLUTE CONTINUITY OF A FUNCTION OF ONE VARIABLE AND ITS APPLICATIONS
Владикавказский математический журнал (Vladikavkaz Mathematical Journal). 2021. V.4. N23. P.41-49. DOI: 10.46698/m7572-3270-2461-v Scopus OpenAlex
Даты:
Поступила в редакцию: | 6 сент. 2021 г. |
Идентификаторы БД:
Scopus: | 2-s2.0-85122075693 |
OpenAlex: | W4200607811 |
Цитирование в БД:
БД | Цитирований |
---|---|
OpenAlex | 1 |