Sciact
  • EN
  • RU

Inequalities in a Two-Sided Boundary Crossing Problem for Stochastic Processes Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2021, Volume: 62, Number: 3, Pages: 455-461 Pages count : 7 DOI: 10.1134/s0037446621030083
Tags stationary stochastic process with independent increments, first exit time, boundary crossing problem, ruin probability
Authors Lotov V.I. 1,2 , Khodjibayev V.R. 3
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University
3 Namangan Engineering - construction Institute

Funding (1)

1 Sobolev Institute of Mathematics 0314-2016-0008

Abstract: Considering a stationary stochastic process with independent increments (L´evy process), we study the probability of the first exit from a strip through its upper boundary. We find the two-sided inequalities for this probability under various conditions on the process.
Cite: Lotov V.I. , Khodjibayev V.R.
Inequalities in a Two-Sided Boundary Crossing Problem for Stochastic Processes
Siberian Mathematical Journal. 2021. V.62. N3. P.455-461. DOI: 10.1134/s0037446621030083 WOS Scopus OpenAlex
Original: Лотов В.И. , Ходжибаев В.Р.
Неравенства в задаче с двумя границами для случайных процессов
Сибирский математический журнал. 2021. Т.62. №3. С.563-571. DOI: 10.33048/smzh.2021.62.308 OpenAlex
Dates:
Submitted: Sep 8, 2020
Accepted: Nov 18, 2020
Published print: Jun 21, 2021
Identifiers:
Web of science: WOS:000655743500008
Scopus: 2-s2.0-85107178444
OpenAlex: W3168926170
Citing:
DB Citing
Scopus 2
Web of science 2
Altmetrics: