On hyperelliptic Euclidean 3-manifolds Научная публикация
Журнал |
Journal of Knot Theory and its Ramifications
ISSN: 0218-2165 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 30, Номер: 10, Номер статьи : 21400015, Страниц : DOI: 10.1142/S0218216521400010 | ||||||
Ключевые слова | branched covering; Euclidean form; fundamental group; homology group; hyperelliptic manifold; π -orbifold | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
In this paper, we study closed orientable Euclidean manifolds which are also known as flat three-dimensional manifolds or just Euclidean 3-forms. Up to homeomorphism, there are six of them. The first one is the three-dimensional torus. In 1972, Fox showed that the 3-torus is not a double branched covering of the 3-sphere. So, it is not a hyperelliptic manifold. In this paper, we show that all the remaining Euclidean 3-forms are hyperelliptic manifolds. © 2021 World Scientific Publishing Company.
Библиографическая ссылка:
Mednykh A.D.
, Vuong B.
On hyperelliptic Euclidean 3-manifolds
Journal of Knot Theory and its Ramifications. 2021. V.30. N10. 21400015 . DOI: 10.1142/S0218216521400010 WOS Scopus OpenAlex
On hyperelliptic Euclidean 3-manifolds
Journal of Knot Theory and its Ramifications. 2021. V.30. N10. 21400015 . DOI: 10.1142/S0218216521400010 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000743509300004 |
Scopus: | 2-s2.0-85121243393 |
OpenAlex: | W4200038350 |
Цитирование в БД:
Пока нет цитирований