Sciact
  • EN
  • RU

The second closed geodesic, the fundamental group, and generic Finsler metrics Full article

Journal Mathematische Zeitschrift
ISSN: 0025-5874 , E-ISSN: 1432-8232
Output data Year: 2022, Volume: 302, Pages: 629-640 Pages count : 12 DOI: 10.1007/s00209-022-03062-z
Tags Closed geodesic , Fundamental group , Generic metric , Finsler metric
Authors Rademacher H.-B. 1 , Taimanov Iskander Asanovich 2,3
Affiliations
1 Leipzig University
2 Novosibirsk State University
3 Sobolev Institute of Mathematics

Funding (1)

1 Russian Science Foundation 19-11-00044

Abstract: For compact manifolds with infinite fundamental group we present sufficient topological or metric conditions ensuring the existence of two geometrically distinct closed geodesics. We also extend results about generic Riemannian metrics to Finsler metrics. We show a bumpy metrics theorem for Finsler metrics and prove that a C^4 -generic Finsler metric on a compact and simply-connected manifold carries infinitely many closed geodesics.
Cite: Rademacher H.-B. , Taimanov I.A.
The second closed geodesic, the fundamental group, and generic Finsler metrics
Mathematische Zeitschrift. 2022. V.302. P.629-640. DOI: 10.1007/s00209-022-03062-z WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Sep 24, 2021
Accepted: May 19, 2022
Published online: Jul 6, 2022
Identifiers:
Web of science: WOS:000823226700001
Scopus: 2-s2.0-85133620681
Elibrary: 49158362
OpenAlex: W3096551285
Citing:
DB Citing
Web of science 8
Scopus 8
OpenAlex 8
Elibrary 4
Altmetrics: