The second closed geodesic, the fundamental group, and generic Finsler metrics Full article
Journal |
Mathematische Zeitschrift
ISSN: 0025-5874 , E-ISSN: 1432-8232 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2022, Volume: 302, Pages: 629-640 Pages count : 12 DOI: 10.1007/s00209-022-03062-z | ||||||
Tags | Closed geodesic , Fundamental group , Generic metric , Finsler metric | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 19-11-00044 |
Abstract:
For compact manifolds with infinite fundamental group we present sufficient topological or metric conditions ensuring the existence of two geometrically distinct closed geodesics. We also extend results about generic Riemannian metrics to Finsler metrics. We show a bumpy metrics theorem for Finsler metrics and prove that a C^4 -generic Finsler metric on a compact and simply-connected manifold carries infinitely many closed geodesics.
Cite:
Rademacher H.-B.
, Taimanov I.A.
The second closed geodesic, the fundamental group, and generic Finsler metrics
Mathematische Zeitschrift. 2022. V.302. P.629-640. DOI: 10.1007/s00209-022-03062-z WOS Scopus РИНЦ OpenAlex
The second closed geodesic, the fundamental group, and generic Finsler metrics
Mathematische Zeitschrift. 2022. V.302. P.629-640. DOI: 10.1007/s00209-022-03062-z WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Sep 24, 2021 |
Accepted: | May 19, 2022 |
Published online: | Jul 6, 2022 |
Identifiers:
Web of science: | WOS:000823226700001 |
Scopus: | 2-s2.0-85133620681 |
Elibrary: | 49158362 |
OpenAlex: | W3096551285 |