Sciact
  • EN
  • RU

Closed geodesics on connected sums and 3-manifolds Научная публикация

Журнал Journal of Differential Geometry
ISSN: 0022-040X , E-ISSN: 1945-743X
Вых. Данные Год: 2022, Том: 120, Номер: 3, Страницы: 557-573 Страниц : 17 DOI: 10.4310/jdg/1649953350
Авторы Rademacher H.-B. 1 , Тайманов Искандер Асанович 2,3
Организации
1 Leipzig University
2 Sobolev Institute of Mathematics
3 Novosibirsk State University

Реферат: We study the asymptotics of the number N(t) of geometrically distinct closed geodesics of length ≤ t of a Riemannian or Finsler metric on a connected sum of two compact manifolds of dimension at least three with non-trivial fundamental groups, and apply the results to the prime decomposition of a three-manifold. In particular we show that the function N(t) grows at least like the prime numbers on a compact 3-manifold with infinite fundamental group. It follows that a generic Riemannian metric on a compact 3-manifold has infinitely many geometrically distinct closed geodesics. We also consider the case of a connected sum of a compact manifold with positive first Betti number and a simplyconnected manifold which is not homeomorphic to a sphere.
Библиографическая ссылка: Rademacher H.-B. , Taimanov I.A.
Closed geodesics on connected sums and 3-manifolds
Journal of Differential Geometry. 2022. V.120. N3. P.557-573. DOI: 10.4310/jdg/1649953350 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 12 сент. 2018 г.
Принята к публикации: 7 янв. 2020 г.
Опубликована online: 15 апр. 2022 г.
Идентификаторы БД:
Web of science: WOS:000789251200006
Scopus: 2-s2.0-85130106876
РИНЦ: 48584841
OpenAlex: W2892237837
Цитирование в БД:
БД Цитирований
Web of science 2
Scopus 2
OpenAlex 3
РИНЦ 2
Альметрики: