THE REGULARITY OF INVERSES TO SOBOLEV MAPPINGS AND THE THEORY OF Qq,p-HOMEOMORPHISMS Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2020, Volume: 61, Number: 6, Pages: 1002-1038 Pages count : 37 DOI: 10.1134/S0037446620060051 | ||
Tags | quasiconformal analysis, Sobolev space, composition operator, capacity estimate | ||
Authors |
|
||
Affiliations |
|
Abstract:
We prove that each homeomorphism ϕ : D → D of Euclidean domains in Rn, n ≥ 2, belonging to the Sobolev class
W1p,loc(D), where p ∈ [1,∞), and having finite distortion induces a bounded composition operator from the weighted Sobolev space L1p(D ; ω) into L1p(D) for some weight function ω : D → (0,∞). This implies that in the cases p > n−1 and n ≥ 3 as well as p ≥ 1 and n ≥ 2 the inverse ϕ−1 : D → D belongs to the Sobolev class W11,loc(D ), has finite distortion, and is differentiable almost everywhere in D. We apply this result to Qq,p-homeomorphisms; the method of proof also works for homeomorphisms of Carnot groups. Moreover, we prove that the class of Qq,p-homeomorphisms is
completely determined by the controlled variation of the capacity of cubical condensers whose shells
are concentric cubes.
Cite:
Vodopʹyanov S.K.
THE REGULARITY OF INVERSES TO SOBOLEV MAPPINGS AND THE THEORY OF Qq,p-HOMEOMORPHISMS
Siberian Mathematical Journal. 2020. V.61. N6. P.1002-1038. DOI: 10.1134/S0037446620060051 WOS Scopus OpenAlex
THE REGULARITY OF INVERSES TO SOBOLEV MAPPINGS AND THE THEORY OF Qq,p-HOMEOMORPHISMS
Siberian Mathematical Journal. 2020. V.61. N6. P.1002-1038. DOI: 10.1134/S0037446620060051 WOS Scopus OpenAlex
Original:
Водопьянов С.К.
О регулярности отображений, обратных к соболевским, и теория {\mathcal Q_{q,p}}-гомеоморфизмов
Сибирский математический журнал. 2020. Т.61. №6. С.1257--1299. DOI: 10.33048/smzh.2020.61.605 OpenAlex
О регулярности отображений, обратных к соболевским, и теория {\mathcal Q_{q,p}}-гомеоморфизмов
Сибирский математический журнал. 2020. Т.61. №6. С.1257--1299. DOI: 10.33048/smzh.2020.61.605 OpenAlex
Dates:
Submitted: | Jul 18, 2020 |
Accepted: | Oct 9, 2020 |
Identifiers:
Web of science: | WOS:000608907600005 |
Scopus: | 2-s2.0-85099664439 |
OpenAlex: | W3121541088 |