Sciact
  • EN
  • RU

Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion Full article

Journal Complex Variables and Elliptic Equations
ISSN: 1747-6933 , E-ISSN: 1747-6941
Output data Year: 2021, Volume: 66, Number: 6-7, Pages: 1037–1072 Pages count : 36 DOI: 10.1080/17476933.2020.1825396
Tags 30C65 (26B35 31B15 46E35) Quasiconformal analysis; Sobolev space; Poletskii function; modulus of a family of curves; modulus estimate
Authors Vodopyanov S.K. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: We prove Poletskii-type moduli inequalities for the two-index scale of weighted bounded (q, p)-distortion under minimal regularity. This implies, in particular, a positive solution to a question formulated in a Tengval’s paper on the validity of Poletskii-type moduli inequalities for nonspherical condensers, for mappings of Sobolev classes with the least possible summability exponent.
Cite: Vodopyanov S.K.
Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion
Complex Variables and Elliptic Equations. 2021. V.66. N6-7. P.1037–1072. DOI: 10.1080/17476933.2020.1825396 WOS Scopus OpenAlex
Dates:
Submitted: Jun 7, 2020
Accepted: Sep 7, 2020
Identifiers:
Web of science: WOS:000588173800001
Scopus: 2-s2.0-85096135196
OpenAlex: W3101354585
Citing:
DB Citing
Scopus 4
OpenAlex 4
Web of science 2
Altmetrics: