Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion Full article
Journal |
Complex Variables and Elliptic Equations
ISSN: 1747-6933 , E-ISSN: 1747-6941 |
||
---|---|---|---|
Output data | Year: 2021, Volume: 66, Number: 6-7, Pages: 1037–1072 Pages count : 36 DOI: 10.1080/17476933.2020.1825396 | ||
Tags | 30C65 (26B35 31B15 46E35) Quasiconformal analysis; Sobolev space; Poletskii function; modulus of a family of curves; modulus estimate | ||
Authors |
|
||
Affiliations |
|
Abstract:
We prove Poletskii-type moduli inequalities for the two-index scale
of weighted bounded (q, p)-distortion under minimal regularity. This
implies, in particular, a positive solution to a question formulated in a
Tengval’s paper on the validity of Poletskii-type moduli inequalities
for nonspherical condensers, for mappings of Sobolev classes with
the least possible summability exponent.
Cite:
Vodopyanov S.K.
Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion
Complex Variables and Elliptic Equations. 2021. V.66. N6-7. P.1037–1072. DOI: 10.1080/17476933.2020.1825396 WOS Scopus OpenAlex
Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion
Complex Variables and Elliptic Equations. 2021. V.66. N6-7. P.1037–1072. DOI: 10.1080/17476933.2020.1825396 WOS Scopus OpenAlex
Dates:
Submitted: | Jun 7, 2020 |
Accepted: | Sep 7, 2020 |
Identifiers:
Web of science: | WOS:000588173800001 |
Scopus: | 2-s2.0-85096135196 |
OpenAlex: | W3101354585 |