Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion Научная публикация
Журнал |
Complex Variables and Elliptic Equations
ISSN: 1747-6933 , E-ISSN: 1747-6941 |
||
---|---|---|---|
Вых. Данные | Год: 2021, Том: 66, Номер: 6-7, Страницы: 1037–1072 Страниц : 36 DOI: 10.1080/17476933.2020.1825396 | ||
Ключевые слова | 30C65 (26B35 31B15 46E35) Quasiconformal analysis; Sobolev space; Poletskii function; modulus of a family of curves; modulus estimate | ||
Авторы |
|
||
Организации |
|
Реферат:
We prove Poletskii-type moduli inequalities for the two-index scale
of weighted bounded (q, p)-distortion under minimal regularity. This
implies, in particular, a positive solution to a question formulated in a
Tengval’s paper on the validity of Poletskii-type moduli inequalities
for nonspherical condensers, for mappings of Sobolev classes with
the least possible summability exponent.
Библиографическая ссылка:
Vodopyanov S.K.
Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion
Complex Variables and Elliptic Equations. 2021. V.66. N6-7. P.1037–1072. DOI: 10.1080/17476933.2020.1825396 WOS Scopus OpenAlex
Moduli inequalities for W^1_{n-1,loc}-mappings with weighted bounded (q, p)-distortion
Complex Variables and Elliptic Equations. 2021. V.66. N6-7. P.1037–1072. DOI: 10.1080/17476933.2020.1825396 WOS Scopus OpenAlex
Даты:
Поступила в редакцию: | 7 июн. 2020 г. |
Принята к публикации: | 7 сент. 2020 г. |
Идентификаторы БД:
Web of science: | WOS:000588173800001 |
Scopus: | 2-s2.0-85096135196 |
OpenAlex: | W3101354585 |