Sciact
  • EN
  • RU

On numerical study of the discrete spectrum of a two-dimensional Schrodinger operator with soliton potential Научная публикация

Журнал Communications in Nonlinear Science and Numerical Simulation
ISSN: 1007-5704
Вых. Данные Год: 2017, Том: 42, Страницы: 83-92 Страниц : 10 DOI: 10.1016/j.cnsns.2016.04.033
Ключевые слова Discrete spectrum; Galerkin method; Schrodinger operator; Soliton
Авторы Adilkhanov A.N. 1 , Тайманов Искандер Асанович 2,3
Организации
1 Nazarbayev University
2 Sobolev Institute of Mathematics
3 Novosibirsk State University

Реферат: The discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov–Veselov equation (a two-dimensional generalization of the Korteweg–de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrödinger operator. The numerical scheme is applicable to a general 2D Schrödinger operator with fast decaying potential.
Библиографическая ссылка: Adilkhanov A.N. , Taimanov I.A.
On numerical study of the discrete spectrum of a two-dimensional Schrodinger operator with soliton potential
Communications in Nonlinear Science and Numerical Simulation. 2017. V.42. P.83-92. DOI: 10.1016/j.cnsns.2016.04.033 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000381584600008
Scopus: 2-s2.0-84971265155
OpenAlex: W2129474133
Цитирование в БД:
БД Цитирований
Web of science 4
Scopus 4
OpenAlex 7
Альметрики: