On numerical study of the discrete spectrum of a two-dimensional Schrodinger operator with soliton potential Научная публикация
Журнал |
Communications in Nonlinear Science and Numerical Simulation
ISSN: 1007-5704 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2017, Том: 42, Страницы: 83-92 Страниц : 10 DOI: 10.1016/j.cnsns.2016.04.033 | ||||||
Ключевые слова | Discrete spectrum; Galerkin method; Schrodinger operator; Soliton | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
The discrete spectra of certain two-dimensional Schrödinger operators are numerically calculated. These operators are obtained by the Moutard transformation and have interesting spectral properties: their kernels are multi-dimensional and the deformations of potentials via the Novikov–Veselov equation (a two-dimensional generalization of the Korteweg–de Vries equation) lead to blowups. The calculations supply the numerical evidence for some statements about the integrable systems related to a 2D Schrödinger operator. The numerical scheme is applicable to a general 2D Schrödinger operator with fast decaying potential.
Библиографическая ссылка:
Adilkhanov A.N.
, Taimanov I.A.
On numerical study of the discrete spectrum of a two-dimensional Schrodinger operator with soliton potential
Communications in Nonlinear Science and Numerical Simulation. 2017. V.42. P.83-92. DOI: 10.1016/j.cnsns.2016.04.033 WOS Scopus OpenAlex
On numerical study of the discrete spectrum of a two-dimensional Schrodinger operator with soliton potential
Communications in Nonlinear Science and Numerical Simulation. 2017. V.42. P.83-92. DOI: 10.1016/j.cnsns.2016.04.033 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000381584600008 |
Scopus: | 2-s2.0-84971265155 |
OpenAlex: | W2129474133 |