Admissible changes of variables for Sobolev functions on (sub-) Riemannian manifolds Full article
Journal |
Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802 |
||||
---|---|---|---|---|---|
Output data | Year: 2019, Volume: 210, Number: 1, Pages: 59--104 Pages count : 50 DOI: 10.1070/SM8899 | ||||
Tags | Riemannian manifold, quasi-isometric map, Sobolev space, composition operator | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
We consider the properties of measurable maps of complete
Riemannian manifolds which induce by composition isomorphisms of the
Sobolev classes with generalized first variables whose exponent of integrability
is distinct from the (Hausdorff) dimension of the manifold. We
show that such maps can be re-defined on a null set so that they become
quasi-isometries.
Cite:
Vodopyanov S.K.
Admissible changes of variables for Sobolev functions on (sub-) Riemannian manifolds
Sbornik Mathematics. 2019. V.210. N1. P.59--104. DOI: 10.1070/SM8899 WOS Scopus OpenAlex
Admissible changes of variables for Sobolev functions on (sub-) Riemannian manifolds
Sbornik Mathematics. 2019. V.210. N1. P.59--104. DOI: 10.1070/SM8899 WOS Scopus OpenAlex
Original:
Водопьянов С.К.
Допустимые замены переменных для функций классов Соболева на (суб)римановых многообразиях
Математический сборник. 2019. Т.210. №1. С.63-112. DOI: 10.4213/sm8899 OpenAlex
Допустимые замены переменных для функций классов Соболева на (суб)римановых многообразиях
Математический сборник. 2019. Т.210. №1. С.63-112. DOI: 10.4213/sm8899 OpenAlex
Dates:
Submitted: | Dec 29, 2016 |
Identifiers:
Web of science: | WOS:000462302200003 |
Scopus: | 2-s2.0-85067941987 |
OpenAlex: | W2897426396 |