Sciact
  • EN
  • RU

Admissible changes of variables for Sobolev functions on (sub-) Riemannian manifolds Full article

Journal Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802
Output data Year: 2019, Volume: 210, Number: 1, Pages: 59--104 Pages count : 50 DOI: 10.1070/SM8899
Tags Riemannian manifold, quasi-isometric map, Sobolev space, composition operator
Authors Vodopyanov S.K. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Faculty of Mechanics and Mathematics of Novosibirsk National Research State University

Abstract: We consider the properties of measurable maps of complete Riemannian manifolds which induce by composition isomorphisms of the Sobolev classes with generalized first variables whose exponent of integrability is distinct from the (Hausdorff) dimension of the manifold. We show that such maps can be re-defined on a null set so that they become quasi-isometries.
Cite: Vodopyanov S.K.
Admissible changes of variables for Sobolev functions on (sub-) Riemannian manifolds
Sbornik Mathematics. 2019. V.210. N1. P.59--104. DOI: 10.1070/SM8899 WOS Scopus OpenAlex
Original: Водопьянов С.К.
Допустимые замены переменных для функций классов Соболева на (суб)римановых многообразиях
Математический сборник. 2019. Т.210. №1. С.63-112. DOI: 10.4213/sm8899 OpenAlex
Dates:
Submitted: Dec 29, 2016
Identifiers:
Web of science: WOS:000462302200003
Scopus: 2-s2.0-85067941987
OpenAlex: W2897426396
Citing:
DB Citing
Scopus 8
OpenAlex 12
Web of science 9
Altmetrics: