Sciact
  • EN
  • RU

DIFFERENTIABILITY OF MAPPINGS OF THE SOBOLEV SPACE $W^1_{n−1}$ WITH CONDITIONS ON THE DISTORTION FUNCTION Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 6, Pages: 983–1005 Pages count : 23 DOI: 10.1134/S0037446618060034
Tags quasiconformal analysis, Sobolev space, capacity estimate, differentiability, Liouville theorem
Authors Vodopyanov S.K. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: We define two scales of the mappings that depend on two real parameters p and q, with n−1 ≤ q ≤ p < ∞, as well as a weight function θ. The case q = p = n and θ ≡ 1 yields the well-known mappings with bounded distortion. The mappings of a two-index scale are applied to solve a series of problems of global analysis and applications. The main result of the article is the a.e. differentiability of mappings of two-index scales.
Cite: Vodopyanov S.K.
DIFFERENTIABILITY OF MAPPINGS OF THE SOBOLEV SPACE $W^1_{n−1}$ WITH CONDITIONS ON THE DISTORTION FUNCTION
Siberian Mathematical Journal. 2018. V.59. N6. P.983–1005. DOI: 10.1134/S0037446618060034 WOS Scopus OpenAlex
Original: Водопьянов С.К.
О дифференцируемости отображений класса Соболева $W^1_{n-1}$ с некоторыми условиями на функцию искажения
Сибирский математический журнал. 2018. Т.59. №6. С.983-1005. DOI: 10.17377/smzh.2018.59.60
Dates:
Submitted: Jul 11, 2018
Identifiers:
Web of science: WOS:000454441000003
Scopus: 2-s2.0-85057482206
OpenAlex: W2906333871
Citing:
DB Citing
Scopus 11
OpenAlex 15
Web of science 8
Altmetrics: