Sciact
  • EN
  • RU

Ideal right-angled polyhedra in Lobachevsky space [Идеальные прямоугольные многогранники в пространстве Лобачевского1] Научная публикация

Журнал Чебышевский сборник (Chebyshevskii Sbornik)
ISSN: 2226-8383
Вых. Данные Год: 2020, Том: 21, Номер: 2, Страницы: 65-83 Страниц : 19 DOI: 10.22405/2226-8383-2020-21-2-65-83
Ключевые слова Antiprism; Hyperbolic 3-space; Ideal polyhedron; Right-angled polyhedron
Авторы Vesnin A.Y. 1,2,3 , Egorov A.A. 1,3
Организации
1 Novosibirsk State University, Novosibirsk, Russian Federation
2 Sobolev Institute of Mathematics
3 Tomsk State University, Tomsk

Реферат: In this paper we consider a class of right-angled polyhedra in three-dimensional Lobachevsky space, all vertices of which lie on the absolute. New upper bounds on volumes in terms the number of faces of the polyhedron are obtained. Volumes of polyhedra with at most 23 faces are computed. It is shown that the minimum volumes are realized on antiprisms and twisted antiprisms. The first 248 values of volumes of ideal right-angled polyhedra are presented. Moreover, the class of polyhedra with isolated triangles is introduces and there are obtained combinatorial bounds on their existence as well as minimal examples of such polyhedra are given. © 2020 State Lev Tolstoy Pedagogical University. All rights reserved.
Библиографическая ссылка: Vesnin A.Y. , Egorov A.A.
Ideal right-angled polyhedra in Lobachevsky space [Идеальные прямоугольные многогранники в пространстве Лобачевского1]
Чебышевский сборник (Chebyshevskii Sbornik). 2020. V.21. N2. P.65-83. DOI: 10.22405/2226-8383-2020-21-2-65-83 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85086128524
OpenAlex: W4288083520
Цитирование в БД:
БД Цитирований
Scopus 8
OpenAlex 7
Альметрики: