Sciact
  • EN
  • RU

Infinite family of 3-connected cubic transmission irregular graphs Научная публикация

Журнал Discrete Applied Mathematics
ISSN: 0166-218X
Вых. Данные Год: 2019, Том: 257, Страницы: 151-157 Страниц : 7 DOI: 10.1016/j.dam.2018.10.036
Ключевые слова Graph invariant; Transmission irregular graph; Vertex transmission; Wiener complexity
Авторы Dobrynin A.A. 1,2
Организации
1 Novosibirsk State University, Novosibirsk, 630090, Russian Federation
2 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation

Реферат: Distance between two vertices is the number of edges in a shortest path connecting them in a connected graph G. The transmission of a vertex v is the sum of distances from v to all the other vertices of G. If transmissions of all vertices are mutually distinct, then G is a transmission irregular graph. It is known that almost no graphs are transmission irregular. Infinite families of transmission irregular trees and 2-connected graphs were presented in Alizadeh and Klavžar (2018) and Dobrynin (2019) [8, 9]. The following problem was posed in Alizadeh and Klavžar (2018): do there exist infinite families of regular transmission irregular graphs? In this paper, an infinite family of 3-connected cubic transmission irregular graphs is constructed. © 2018 Elsevier B.V.
Библиографическая ссылка: Dobrynin A.A.
Infinite family of 3-connected cubic transmission irregular graphs
Discrete Applied Mathematics. 2019. V.257. P.151-157. DOI: 10.1016/j.dam.2018.10.036 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000462104600014
Scopus: 2-s2.0-85057222947
OpenAlex: W2903068392
Цитирование в БД:
БД Цитирований
Scopus 15
OpenAlex 18
Web of science 15
Альметрики: