On the Whitney Problem for Weighted Sobolev Spaces Full article
Journal |
Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362 |
||||
---|---|---|---|---|---|
Output data | Year: 2017, Volume: 95, Number: 2, Pages: 1-5 Pages count : 5 DOI: 10.1134/S1064562417010276 | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
Given a closed weakly regular d-thick subset S of ℝn, the existence of a bounded linear extension
operator Ext: Tr|S (ℝ^n, \gamma) \to (ℝ^n, gamma) is proved for p \in (1, ∞), 0\leq d \leq n, r \in (max{1, n – d}, p), l \in N,
and \gamma \in A_{p/r}(ℝ^n). In particular, it is proved that a linear bounded operator extension exists in the case where S
is the closure of an arbitrary domain in ℝ^n, \gamma=1, and p > n – 1. The obtained results supplement those of
previous studies, in which a similar problem was considered either in the case of p \in (n, ∞) without constraints
on the set S or in the case of p \in (1, ∞) under stronger constraints on the set S.
Cite:
Vodop’yanov S.K.
, Tyulenev A.I.
On the Whitney Problem for Weighted Sobolev Spaces
Doklady Mathematics. 2017. V.95. N2. P.1-5. DOI: 10.1134/S1064562417010276 WOS Scopus OpenAlex
On the Whitney Problem for Weighted Sobolev Spaces
Doklady Mathematics. 2017. V.95. N2. P.1-5. DOI: 10.1134/S1064562417010276 WOS Scopus OpenAlex
Original:
Водопьянов С.К.
, Тюленев А.И.
О проблеме Уитни для весовых пространств Соболева
Доклады академии наук. 2017. Т.472. №6. С.634-638. DOI: 10.7868/S086956521706007X OpenAlex
О проблеме Уитни для весовых пространств Соболева
Доклады академии наук. 2017. Т.472. №6. С.634-638. DOI: 10.7868/S086956521706007X OpenAlex
Dates:
Submitted: | Sep 23, 2016 |
Identifiers:
Web of science: | WOS:000399585800021 |
Scopus: | 2-s2.0-85018521898 |
OpenAlex: | W2606723896 |