Sciact
  • EN
  • RU

On the Whitney Problem for Weighted Sobolev Spaces Full article

Journal Doklady Mathematics
ISSN: 1064-5624 , E-ISSN: 1531-8362
Output data Year: 2017, Volume: 95, Number: 2, Pages: 1-5 Pages count : 5 DOI: 10.1134/S1064562417010276
Authors Vodop’yanov S.K. 1,2 , Tyulenev A.I. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
2 Steklov Mathematical Institute

Abstract: Given a closed weakly regular d-thick subset S of ℝn, the existence of a bounded linear extension operator Ext: Tr|S (ℝ^n, \gamma) \to (ℝ^n, gamma) is proved for p \in (1, ∞), 0\leq d \leq n, r \in (max{1, n – d}, p), l \in N, and \gamma \in A_{p/r}(ℝ^n). In particular, it is proved that a linear bounded operator extension exists in the case where S is the closure of an arbitrary domain in ℝ^n, \gamma=1, and p > n – 1. The obtained results supplement those of previous studies, in which a similar problem was considered either in the case of p \in (n, ∞) without constraints on the set S or in the case of p \in (1, ∞) under stronger constraints on the set S.
Cite: Vodop’yanov S.K. , Tyulenev A.I.
On the Whitney Problem for Weighted Sobolev Spaces
Doklady Mathematics. 2017. V.95. N2. P.1-5. DOI: 10.1134/S1064562417010276 WOS Scopus OpenAlex
Original: Водопьянов С.К. , Тюленев А.И.
О проблеме Уитни для весовых пространств Соболева
Доклады академии наук. 2017. Т.472. №6. С.634-638. DOI: 10.7868/S086956521706007X OpenAlex
Dates:
Submitted: Sep 23, 2016
Identifiers:
Web of science: WOS:000399585800021
Scopus: 2-s2.0-85018521898
OpenAlex: W2606723896
Citing:
DB Citing
Scopus 3
OpenAlex 6
Web of science 2
Altmetrics: