Sciact
  • EN
  • RU

Sobolev spaces and quasiconformal mappings in (sub)-Riemannian geometry Conference Abstracts

Conference Международная конференция "Современная геометрия и ее приложения"
27 Nov - 3 Dec 2017 , Казань
Source Труды математического центра имени Н.И. Лобачевского
Compilation, Академия наук РТ, Казанское математическое общество. 2017.
Output data Year: 2017, Volume: 54, Pages: 18-21 Pages count : 4
Tags outer and inner distortion, pullback operator of differential forms, mapping with bounded θ-weighted (q,p)-distortion, Polecki˘i function, capacity.
Authors Vodopyanov S.K.
Affiliations
1 Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

Abstract: We define a two-index scale of mappings with θ-weighted (q,p)-distortion. The qoal of the paper is to show that the mappings of a new class inherit many properties of mappings with bounded distortion. In addition, homeomorphic maps of this class for θ ≡ 1, n −1 ≤ q < p = n can be considered as admissible deformations in problems of the non-linear theory of elasticity.
Cite: Vodopyanov S.K.
Sobolev spaces and quasiconformal mappings in (sub)-Riemannian geometry
In compilation Труды математического центра имени Н.И. Лобачевского. – Академия наук РТ, Казанское математическое общество., 2017. – Т.54. – C.18-21.
Dates:
Submitted: Oct 9, 2017
Identifiers: No identifiers
Citing: Пока нет цитирований