Sobolev spaces and quasiconformal mappings in (sub)-Riemannian geometry Conference Abstracts
Conference |
Международная конференция "Современная геометрия и ее приложения" 27 Nov - 3 Dec 2017 , Казань |
||
---|---|---|---|
Source | Труды математического центра имени Н.И. Лобачевского Compilation, Академия наук РТ, Казанское математическое общество. 2017. |
||
Output data | Year: 2017, Volume: 54, Pages: 18-21 Pages count : 4 | ||
Tags | outer and inner distortion, pullback operator of differential forms, mapping with bounded θ-weighted (q,p)-distortion, Polecki˘i function, capacity. | ||
Authors |
|
||
Affiliations |
|
Abstract:
We define a two-index scale of mappings with θ-weighted (q,p)-distortion. The qoal of the
paper is to show that the mappings of a new class inherit many properties of mappings with
bounded distortion. In addition, homeomorphic maps of this class for θ ≡ 1, n −1 ≤ q < p = n can be considered as admissible deformations in problems of the non-linear theory of elasticity.
Cite:
Vodopyanov S.K.
Sobolev spaces and quasiconformal mappings in (sub)-Riemannian geometry
In compilation Труды математического центра имени Н.И. Лобачевского. – Академия наук РТ, Казанское математическое общество., 2017. – Т.54. – C.18-21.
Sobolev spaces and quasiconformal mappings in (sub)-Riemannian geometry
In compilation Труды математического центра имени Н.И. Лобачевского. – Академия наук РТ, Казанское математическое общество., 2017. – Т.54. – C.18-21.
Dates:
Submitted: | Oct 9, 2017 |
Identifiers:
No identifiers
Citing:
Пока нет цитирований