Взаимные вложения прямоугольных артиновых групп и обобщенных групп Баумслага – Солитера Доклады на конференциях
Язык | Русский | ||
---|---|---|---|
Тип доклада | Секционный | ||
Конференция |
Международная конференция "МАЛЬЦЕВСКИЕ ЧТЕНИЯ" 14-18 нояб. 2022 , Новосибирск |
||
Авторы |
|
||
Организации |
|
Реферат:
В докладе обсуждаются новые результаты о взаимных вложениях прямоугольных артиновых групп и обобщенных групп Баумслага – Солитера. Получены следующие результаты:
Теорема 1. Если GBS группа G вкладывается в RAAG H, то G ∼= F_n × Z, n ⩾ 0. Вложение G ∼= F_n × Z в RAAG H может быть построено алгоритмически.
Теорема 2. Если конечно порожденная RAAG H вкладывается в GBS группу G, то H либо свободна, либо H ∼= F_n × Z, n ⩾ 0. Вложение RAAG H в G может быть построено алгоритмически.
Библиографическая ссылка:
Дудкин Ф.А.
Взаимные вложения прямоугольных артиновых групп и обобщенных групп Баумслага – Солитера
Международная конференция "МАЛЬЦЕВСКИЕ ЧТЕНИЯ" 14-18 нояб. 2022
Взаимные вложения прямоугольных артиновых групп и обобщенных групп Баумслага – Солитера
Международная конференция "МАЛЬЦЕВСКИЕ ЧТЕНИЯ" 14-18 нояб. 2022