Sobolev spaces and quasiconformal mappings in (sub)Riemannian geometry Доклады на конференциях
Язык | Английский | ||
---|---|---|---|
Тип доклада | Ключевой | ||
Конференция |
МЕЖДУНАРОДНАЯ Школа-Конференцию «Соболевские чтения» 20-23 авг. 2017 , Новосибирск |
||
Авторы |
|
||
Организации |
|
Реферат:
In this talk we describe metric properties of measurable mappings of domains in (sub)-Riemannian manifolds inducing isomorphisms on Sobolev spaces by the composition rule. We show that any such mapping can be
redefined on a set of measure zero to be quasi-isometric, when the exponent of summability is different from the Hausdorff dimension of a (sub)-Riemannian manifold, or to be a quasi-conformal mapping otherwise.
Библиографическая ссылка:
Vodopyanov S.
Sobolev spaces and quasiconformal mappings in (sub)Riemannian geometry
МЕЖДУНАРОДНАЯ Школа-Конференцию «Соболевские чтения» 20-23 Aug 2017
Sobolev spaces and quasiconformal mappings in (sub)Riemannian geometry
МЕЖДУНАРОДНАЯ Школа-Конференцию «Соболевские чтения» 20-23 Aug 2017