Sciact
  • EN
  • RU

Two-dimensional Calderon problem and flat metrics Доклады на конференциях

Язык Английский
Тип доклада Пленарный
Конференция The 10th international conference «Quasilinear Equations, Inverse Problems and their Applications»
17-21 окт. 2024 , SIRIUS
Авторы Sharafutdinov V. 1
Организации
1 Институт математики им. С.Л. Соболева СО РАН

Реферат: The Calderon problem consists of recovering a compact Riemannian surface from ints Diriclet-to-Neumann map. Due to the conformal invariance of the Laplace-Beltrami operator, the surface can be recovered up to a conformal equivalence only. On the other hand, the case of a general simply connected surface can be reduced to the case of a simoly connected multi-sheet planar domain. We suggest an approach for numetical solution of the problem. It is a joint work with W. Lionheart and C. Storozhuk.
Библиографическая ссылка: Sharafutdinov V.
Two-dimensional Calderon problem and flat metrics
The 10th international conference «Quasilinear Equations, Inverse Problems and their Applications» 17-21 Oct 2024