Sciact
  • EN
  • RU

The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in Euclidean space does not always remain unaltered during the flex Доклады на конференциях

Язык Английский
Тип доклада Пленарный
Url доклада https://icerm.brown.edu/topical_workshops/tw-20-cpgr/#applications
Конференция Circle Packings and Geometric Rigidity
06-10 июл. 2020 , ICERM, Providence
Авторы Alexandrov Victor 1,2
Организации
1 Институт математики им. С.Л. Соболева СО РАН
2 Новосибирский государственный университет

Реферат: We study the Dirichlet and Neumann eigenvalues for the Laplace operator in bounded domains of Euclidean d-space whose boundary is a flexible polyhedron. The main result is that both the Dirichlet and Neumann spectra of the Laplace operator in such a domain do not necessarily remain unaltered during the flex of its boundary.
Библиографическая ссылка: Alexandrov V.
The spectrum of the Laplacian in a domain bounded by a flexible polyhedron in Euclidean space does not always remain unaltered during the flex
Circle Packings and Geometric Rigidity 06-10 Jul 2020