Sciact
  • EN
  • RU

Nonlocal problems for the generalized Boussinesq–Love equation Доклады на конференциях

Язык Английский
Тип доклада Секционный
Конференция Russian-Chinese Conference "Differential and Difference Equations"
31 окт. - 6 нояб. 2025 , Новосибирск, НГУ
Авторы Kozhanov A.I. 1 , Wang M. 2
Организации
1 Институт математики им. С.Л. Соболева СО РАН
2 Новосибирский государственный университет

Реферат: This work investigates the solvability of nonlocal boundary value problems for the generalized Boussinesq–Love differential equation [1–3] in anisotropic S. L. Sobolev spaces. A distinctive feature of the studied problems is that their nonlocal conditions represent Samarskii–Ionkin type conditions with respect to the temporal (distinguished) variable. The main objective of this work is to prove existence and uniqueness theorems for regular solutions of the considered problems – specifically, solutions possessing all generalized derivatives in the S. L. Sobolev sense that appear in the corresponding equation.
Библиографическая ссылка: Kozhanov A.I. , Wang M.
Nonlocal problems for the generalized Boussinesq–Love equation
Russian-Chinese Conference "Differential and Difference Equations" 31 Oct - 6 Nov 2025