The right-symmetric algebras possessing a “unital” matrix subalgebra Conference attendances
Language | Русский | ||||
---|---|---|---|---|---|
Participant type | Секционный | ||||
URL | http://math.nsc.ru/conference/malmeet/19/maltsev19.pdf | ||||
Conference |
Международная конференция "Мальцевские чтения" 19-23 Aug 2019 , Новосибирск |
||||
Authors |
|
||||
Affiliations |
|
Abstract:
In the present talk we give classification of all finite-dimensional left(right)-symmetric
algebras A = W ⊕ M2 over a field F of characteristic zero such that W is an irreducible
unital right module over M2 := M2(F), and M2 is a subalgebra of A, whose unity E serves
as the unity for A as well (we call such subalgebras unital). We also show that for every
natural n there exists a simple nonassociative left(right)-symmetric algebra, which possesses
the “unital” matrix subalgebra Mn(F).
Cite:
Пожидаев А.П.
, Шестаков И.П.
The right-symmetric algebras possessing a “unital” matrix subalgebra
Международная конференция "Мальцевские чтения" 19-23 авг. 2019
The right-symmetric algebras possessing a “unital” matrix subalgebra
Международная конференция "Мальцевские чтения" 19-23 авг. 2019