The right-symmetric algebras possessing a “unital” matrix subalgebra Доклады на конференциях
Язык | Русский | ||||
---|---|---|---|---|---|
Тип доклада | Секционный | ||||
Url доклада | http://math.nsc.ru/conference/malmeet/19/maltsev19.pdf | ||||
Конференция |
Международная конференция "Мальцевские чтения" 19-23 авг. 2019 , Новосибирск |
||||
Авторы |
|
||||
Организации |
|
Реферат:
In the present talk we give classification of all finite-dimensional left(right)-symmetric
algebras A = W ⊕ M2 over a field F of characteristic zero such that W is an irreducible
unital right module over M2 := M2(F), and M2 is a subalgebra of A, whose unity E serves
as the unity for A as well (we call such subalgebras unital). We also show that for every
natural n there exists a simple nonassociative left(right)-symmetric algebra, which possesses
the “unital” matrix subalgebra Mn(F).
Библиографическая ссылка:
Пожидаев А.П.
, Шестаков И.П.
The right-symmetric algebras possessing a “unital” matrix subalgebra
Международная конференция "Мальцевские чтения" 19-23 авг. 2019
The right-symmetric algebras possessing a “unital” matrix subalgebra
Международная конференция "Мальцевские чтения" 19-23 авг. 2019