Sciact
  • EN
  • RU

On Exact Large Deviation Principles for Compound Renewal Processes Научная публикация

Журнал Theory of Probability and its Applications
ISSN: 0040-585X , E-ISSN: 1095-7219
Вых. Данные Год: 2021, Том: 66, Номер: 2, Страницы: 170 - 183 Страниц : 14 DOI: 10.1137/S0040585X97T990332
Ключевые слова deviation functional; exact large deviation principle; extended large deviation principle; large deviation principle; most probable trajectory; random walks
Авторы Боровков Александр Алексеевич 1
Организации
1 Sobolev Institute of Mathematics

Реферат: We consider two large deviation principles (LDPs): the “ordinary” LDP (when the “strong” Cramér condition is met) and the “extended” LDP when only the standard Cramér condition is met and the deviation functional may be finite also for discontinuous trajectories. The standard formulation of these principles involves two asymptotic (upper and lower) estimates for the logarithms of the probabilities that the normalized trajectory of the process lies in a given set B. We obtain conditions on a set B such that these estimates coincide and the large deviation principles take the form of exact asymptotic equalities. Such LDPs are called exact. We show that the estimating interval of an ordinary LDP is contained in the estimating interval of the extended LDP. Hence the fulfillment of the exact extended LDP implies that of the exact ordinary LDP. The results obtained in the present paper are also fully valid and relevant for random walks (a special case of compound recovery processes). © by SIAM. Unauthorized reproduction of this article is prohibited.
Библиографическая ссылка: Borovkov A.A.
On Exact Large Deviation Principles for Compound Renewal Processes
Theory of Probability and its Applications. 2021. V.66. N2. P.170 - 183. DOI: 10.1137/S0040585X97T990332 WOS Scopus OpenAlex
Оригинальная: Боровков А.А.
О точных принципах больших уклонений для обобщенного процесса восстановления
Теория вероятностей и ее применения. 2021. Т.66. №2. С.214–230. DOI: 10.4213/tvp5470 РИНЦ OpenAlex
Идентификаторы БД:
Web of science: WOS:000684185800001
Scopus: 2-s2.0-85123602929
OpenAlex: W3190940734
Цитирование в БД:
БД Цитирований
Scopus 3
OpenAlex 4
Web of science 3
Альметрики: