Sciact
  • EN
  • RU

Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations Full article

Journal Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802
Output data Year: 2017, Volume: 208, Number: 8, Pages: 1088-1112 Pages count : 25 DOI: 10.1070/SM8883
Tags Averaging method; Hyperbolic equations; Parametric resonance
Authors Belonosov V.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
2 Novosibirsk State University, Russian Federation

Abstract: This paper is concerned with parametric resonance under nonlinear periodic perturbations of differential equations which are abstract analogues of hyperbolic systems. A modification of the Krylov-Bogolyubov averaging method capable of circumventing the well-known small divisor problem is applied to reduce the description of solutions of perturbed equations at resonance to the study of autonomous dynamical systems in finite-dimensional spaces. © 2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
Cite: Belonosov V.S.
Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
Sbornik Mathematics. 2017. V.208. N8. P.1088-1112. DOI: 10.1070/SM8883 WOS Scopus OpenAlex
Original: Белоносов В.С.
Асимптотический анализ параметрической неустойчивости нелинейных гиперболических уравнений
Математический сборник. 2017. Т.208. №8. С.4-30. DOI: 10.4213/sm8883 OpenAlex
Identifiers:
Web of science: WOS:000413222800002
Scopus: 2-s2.0-85049165082
OpenAlex: W2614372683
Citing:
DB Citing
Scopus 2
OpenAlex 2
Altmetrics: