Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations Научная публикация
Журнал |
Sbornik Mathematics
ISSN: 1064-5616 , E-ISSN: 1468-4802 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2017, Том: 208, Номер: 8, Страницы: 1088-1112 Страниц : 25 DOI: 10.1070/SM8883 | ||||
Ключевые слова | Averaging method; Hyperbolic equations; Parametric resonance | ||||
Авторы |
|
||||
Организации |
|
Реферат:
This paper is concerned with parametric resonance under nonlinear periodic perturbations of differential equations which are abstract analogues of hyperbolic systems. A modification of the Krylov-Bogolyubov averaging method capable of circumventing the well-known small divisor problem is applied to reduce the description of solutions of perturbed equations at resonance to the study of autonomous dynamical systems in finite-dimensional spaces. © 2017 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.
Библиографическая ссылка:
Belonosov V.S.
Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
Sbornik Mathematics. 2017. V.208. N8. P.1088-1112. DOI: 10.1070/SM8883 WOS Scopus OpenAlex
Asymptotic analysis of the parametric instability of nonlinear hyperbolic equations
Sbornik Mathematics. 2017. V.208. N8. P.1088-1112. DOI: 10.1070/SM8883 WOS Scopus OpenAlex
Оригинальная:
Белоносов В.С.
Асимптотический анализ параметрической неустойчивости нелинейных гиперболических уравнений
Математический сборник. 2017. Т.208. №8. С.4-30. DOI: 10.4213/sm8883 OpenAlex
Асимптотический анализ параметрической неустойчивости нелинейных гиперболических уравнений
Математический сборник. 2017. Т.208. №8. С.4-30. DOI: 10.4213/sm8883 OpenAlex
Идентификаторы БД:
Web of science: | WOS:000413222800002 |
Scopus: | 2-s2.0-85049165082 |
OpenAlex: | W2614372683 |