Sciact
  • EN
  • RU

Boundary Crossing Problems for Compound Renewal Processes Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2020, Volume: 61, Number: 1, Pages: 21–46 Pages count : DOI: 10.1134/S0037446620010036
Tags compound renewal process, boundary crossing problems, large deviation, ruin probability problem
Authors Borovkov Aleksandr Alekseevich 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: We find sharp asymptotics of the probability that the trajectory of a compound renewal process crosses (or does not cross) an arbitrary remote boundary. In particular, some limit theorems are obtained for the distribution of the maximum of the process in the domain of large deviations. We also give some applications to the classical ruin probability problem in insurance theory.
Cite: Borovkov A.A.
Boundary Crossing Problems for Compound Renewal Processes
Siberian Mathematical Journal. 2020. V.61. N1. P.21–46. DOI: 10.1134/S0037446620010036 WOS Scopus OpenAlex
Original: Боровков А.А.
Граничные задачи для обобщенных процессов восстановления
Сибирский математический журнал. 2020. Т.61. №1. С.29–59. DOI: 10.33048/smzh.2020.61.103 РИНЦ OpenAlex
Dates:
Submitted: Aug 27, 2019
Accepted: Oct 18, 2019
Published print: Feb 26, 2020
Identifiers:
Web of science: WOS:000516567300003
Scopus: 2-s2.0-105003012516
OpenAlex: W3007853665
Citing:
DB Citing
OpenAlex 1
Scopus 1
Altmetrics: