Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. II Научная публикация
Журнал |
Сибирский математический журнал
ISSN: 0037-4474 |
||
---|---|---|---|
Вых. Данные | Год: 2018, Том: 59, Номер: 4, Страницы: 736–758 Страниц : DOI: 10.17377/smzh.2018.59.402 | ||
Ключевые слова | обобщенный процесс восстановления, большие уклонения, интегро-локальные теоремы, мера восстановления, условие Крамера, функция уклонений, вторая функция уклонений | ||
Авторы |
|
||
Организации |
|
Реферат:
Приведены доказательства утверждений, сформулированных в [1]. В качестве вспомогательного утверждения доказана интегро-локальная теорема для меры восстановления двумерного случайного блуждания.
Библиографическая ссылка:
Боровков А.А.
, Могульский А.А.
Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. II
Сибирский математический журнал. 2018. Т.59. №4. С.736–758. DOI: 10.17377/smzh.2018.59.402 РИНЦ
Интегро-локальные предельные теоремы для обобщенных процессов восстановления при выполнении условия Крамера. II
Сибирский математический журнал. 2018. Т.59. №4. С.736–758. DOI: 10.17377/smzh.2018.59.402 РИНЦ
Переводная:
Borovkov A.A.
, Mogulskii A.A.
Integro-Local Limit Theorems for Compound Renewal Processes Under Cramér’s Condition. II
Siberian Mathematical Journal. 2018. V.59. N4. P.578-597. DOI: 10.1134/S003744661804002X WOS Scopus OpenAlex
Integro-Local Limit Theorems for Compound Renewal Processes Under Cramér’s Condition. II
Siberian Mathematical Journal. 2018. V.59. N4. P.578-597. DOI: 10.1134/S003744661804002X WOS Scopus OpenAlex
Даты:
Поступила в редакцию: | 11 дек. 2017 г. |
Идентификаторы БД:
РИНЦ: | 41262625 |
Цитирование в БД:
БД | Цитирований |
---|---|
РИНЦ | 8 |