Sciact
  • EN
  • RU

On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs Научная публикация

Журнал Algebra Colloquium
ISSN: 1005-3867
Вых. Данные Год: 2020, Том: 27, Номер: 1, Страницы: 87-94 Страниц : 8 DOI: 10.1142/S1005386720000085
Ключевые слова Chebyshev polynomial; circulant graph; generating function; spanning tree
Авторы Mednykh A.D. 1,2 , Mednykh I.A. 1,2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Novosibirsk, 630090, Russian Federation

Реферат: Let F(x) = n=1s1,s2, ...,sk(n)xn be the generating function for the number τs1,s2, ...,sk(n) of spanning trees in the circulant graph Cn(s1, s2, ..., sk). We show that F(x) is a rational function with integer coefficients satisfying the property F(x) = F(1/x). A similar result is also true for the circulant graphs C2n(s1, s2, ..., sk, n) of odd valency. We illustrate the obtained results by a series of examples.
Библиографическая ссылка: Mednykh A.D. , Mednykh I.A.
On Rationality of Generating Function for the Number of Spanning Trees in Circulant Graphs
Algebra Colloquium. 2020. V.27. N1. P.87-94. DOI: 10.1142/S1005386720000085 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000518157600008
Scopus: 2-s2.0-85080125218
OpenAlex: W3008816466
Цитирование в БД:
БД Цитирований
Scopus 4
OpenAlex 4
Web of science 3
Альметрики: