Sciact
  • EN
  • RU

Comparative Analysis of Deep Neural Network and Texture-Based Classifiers for Recognition of Acute Stroke using Non-Contrast CT Images Научная публикация

Конференция Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology
14-15 мая 2020 , Екатеринбург
Сборник Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology
Сборник, IEEE. 2020. 383 c.
Вых. Данные Год: 2020, Номер статьи : 9117784, Страниц : 4 DOI: 10.1109/USBEREIT48449.2020.9117784
Ключевые слова acute stroke; classification; deep neural network; texture segmentation; U-net
Авторы Nedel'ko V. 1 , Kozinets R. 2 , Tulupov A. 3 , Berikov V. 1
Организации
1 Sobolev Institute of Mathematics Sb Ras, Data Analysis Laboratory, Novosibirsk, Russian Federation
2 Novosibirsk State University, Department of Mechanics and Mathematics, Novosibirsk, Russian Federation
3 International Tomography Center Sb Ras, Mrt Technology Laboratory, Novosibirsk, Russian Federation

Реферат: This work presents a computer technology for automatic recognition of acute stroke using non-contrast computed tomography brain images. The early diagnosis of acute stroke is of primary importance for deciding on a method for further treatment, and the developed system aims at assisting a radiology specialist in the decision making process. We consider deep neural network and texture-based classifiers in order to compare their efficiency on a moderate-sized sample of patients with acute stroke. We use U-net as a basic architecture of the neural network, and Haralick textural features, extracted from images, for kNN, SVM, Random Forest and Adaboost classifiers. Experiments with real CT images using cross-validation technique show that deep neural network outperforms the considered texture-based classifiers; however, the latter are faster in training. We demonstrate that texture-based approach is able to give potentially useful additional information for stroke recognition, such as estimates of textural features importance; visualization of differences in positive and negative class distributions. © 2020 IEEE.
Библиографическая ссылка: Nedel'ko V. , Kozinets R. , Tulupov A. , Berikov V.
Comparative Analysis of Deep Neural Network and Texture-Based Classifiers for Recognition of Acute Stroke using Non-Contrast CT Images
В сборнике Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology. – IEEE., 2020. – C.376-379. DOI: 10.1109/USBEREIT48449.2020.9117784 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85089658891
OpenAlex: W3036694159
Цитирование в БД:
БД Цитирований
Scopus 6
OpenAlex 6
Альметрики: