Sciact
  • EN
  • RU

Autoencoder-based Low-Rank Spectral Ensemble Clustering of Biological Data Научная публикация

Конференция Cognitive Sciences, Genomics and Bioinformatics
06-10 июл. 2020 , Новосибирск
Сборник Proceedings - 2020 Cognitive Sciences, Genomics and Bioinformatics, CSGB 2020
Сборник, IEEE. 2020. 300 c.
Вых. Данные Год: 2020, Номер статьи : 9214622, Страниц : 4 DOI: 10.1109/CSGB51356.2020.9214622
Ключевые слова autoencoder; cardiotocography; ensemble clustering; low-rank decomposition; mice protein expression; spectral clustering
Авторы Berikov V. 1
Организации
1 Institute of Mathematics Sb Ras, Data Analysis Laboratory, Novosibirsk, Russian Federation

Реферат: This work presents a cluster ensemble algorithm using a combination of low-rank co-association matrix decomposition, deep autoencoder transformation, and spectral clustering. The suggested algorithm is studied on Mice Protein Expression dataset and Cardiotocography dataset. Monte-Carlo simulations are used to evaluate the clustering performance. The experiments show that the proposed algorithm significantly outperforms other considered variants of clustering framework with respect to clustering accuracy. © 2020 IEEE.
Библиографическая ссылка: Berikov V.
Autoencoder-based Low-Rank Spectral Ensemble Clustering of Biological Data
В сборнике Proceedings - 2020 Cognitive Sciences, Genomics and Bioinformatics, CSGB 2020. – IEEE., 2020. – C.43-46. DOI: 10.1109/CSGB51356.2020.9214622 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85094842125
OpenAlex: W3092551038
Цитирование в БД:
БД Цитирований
Scopus 3
OpenAlex 2
Альметрики: