Complexity of the circulant foliation over a graph Научная публикация
Журнал |
Journal of Algebraic Combinatorics
ISSN: 0925-9899 , E-ISSN: 1572-9192 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2021, Том: 53, Номер: 1, Страницы: 115-129 Страниц : 15 DOI: 10.1007/s10801-019-00921-7 | ||||||
Ключевые слова | Chebyshev polynomials; Circulant graphs; I-graphs; Laplacian matrices; Petersen graphs; Spanning trees | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
In the present paper, we investigate the complexity of infinite family of graphs Hn=Hn(G1,G2,…,Gm) obtained as a circulant foliation over a graph H on m vertices with fibers G1,G2,…,Gm. Each fiber Gi=Cn(si,1,si,2,…,si,ki) of this foliation is the circulant graph on n vertices with jumps si,1,si,2,…,si,ki. This family includes the family of generalized Petersen graphs, I-graphs, sandwiches of circulant graphs, discrete torus graphs and others. We obtain a closed formula for the number τ(n) of spanning trees in Hn in terms of Chebyshev polynomials, investigate some arithmetical properties of this function and find its asymptotics as n→ ∞. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка:
Kwon Y.S.
, Mednykh A.D.
, Mednykh I.A.
Complexity of the circulant foliation over a graph
Journal of Algebraic Combinatorics. 2021. V.53. N1. P.115-129. DOI: 10.1007/s10801-019-00921-7 WOS Scopus OpenAlex
Complexity of the circulant foliation over a graph
Journal of Algebraic Combinatorics. 2021. V.53. N1. P.115-129. DOI: 10.1007/s10801-019-00921-7 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000516454100001 |
Scopus: | 2-s2.0-85079637930 |
OpenAlex: | W3009018281 |