Sciact
  • EN
  • RU

Complexity of the circulant foliation over a graph Научная публикация

Журнал Journal of Algebraic Combinatorics
ISSN: 0925-9899 , E-ISSN: 1572-9192
Вых. Данные Год: 2021, Том: 53, Номер: 1, Страницы: 115-129 Страниц : 15 DOI: 10.1007/s10801-019-00921-7
Ключевые слова Chebyshev polynomials; Circulant graphs; I-graphs; Laplacian matrices; Petersen graphs; Spanning trees
Авторы Kwon Y.S. 1 , Mednykh A.D. 2,3 , Mednykh I.A. 2,3
Организации
1 Department of Mathematics, Yeungnam University, Gyeongsan, South Korea
2 Sobolev Institute of Mathematics
3 Novosibirsk State University

Реферат: In the present paper, we investigate the complexity of infinite family of graphs Hn=Hn(G1,G2,…,Gm) obtained as a circulant foliation over a graph H on m vertices with fibers G1,G2,…,Gm. Each fiber Gi=Cn(si,1,si,2,…,si,ki) of this foliation is the circulant graph on n vertices with jumps si,1,si,2,…,si,ki. This family includes the family of generalized Petersen graphs, I-graphs, sandwiches of circulant graphs, discrete torus graphs and others. We obtain a closed formula for the number τ(n) of spanning trees in Hn in terms of Chebyshev polynomials, investigate some arithmetical properties of this function and find its asymptotics as n→ ∞. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Библиографическая ссылка: Kwon Y.S. , Mednykh A.D. , Mednykh I.A.
Complexity of the circulant foliation over a graph
Journal of Algebraic Combinatorics. 2021. V.53. N1. P.115-129. DOI: 10.1007/s10801-019-00921-7 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000516454100001
Scopus: 2-s2.0-85079637930
OpenAlex: W3009018281
Цитирование в БД:
БД Цитирований
Scopus 5
OpenAlex 7
Web of science 3
Альметрики: