Sciact
  • EN
  • RU

To recovering of continuous function by its sequences of Fejer sums at given set of points Научная публикация

Журнал Proceedings of the International Geometry Center
ISSN: 2072-9812 , E-ISSN: 2409-8906
Вых. Данные Год: 2020, Том: 13, Номер: 3, Страницы: 1-9 Страниц : 9 DOI: 10.15673/tmgc.v13i3.1757
Ключевые слова Continuous 2p-periodic functions; Continuous absolutely Lebesgue integrable on the real line functions; Fejér integrals; Fejér sums; Uniquely recovering
Авторы Kachurovskii A. 1 , Podvigin I. 1,2
Организации
1 Sobolev Institute of Mathematics, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia

Реферат: It is shown that a continuous 2π-periodic function is uniquely recovered (on the whole real line) by sequences of its Fejér sums values at the given finite set of points if and only if there exist two of these points with the distance between them incommensurable with π. And that full sets of Fejér integrals at any two different points always uniquely recover continuous absolutely Lebesgue integrable on the real line function. Wherein known sequence of Fejér sums values at a fixed single point x P R and full set of Fejér integrals at this point determines uniquely a function only in the class of continuous functions with an even shift by x.
Библиографическая ссылка: Kachurovskii A. , Podvigin I.
To recovering of continuous function by its sequences of Fejer sums at given set of points
Proceedings of the International Geometry Center. 2020. V.13. N3. P.1-9. DOI: 10.15673/tmgc.v13i3.1757 Scopus OpenAlex
Идентификаторы БД:
Scopus: 2-s2.0-85095877095
OpenAlex: W3124037379
Цитирование в БД: Пока нет цитирований
Альметрики: