The Fejér Integrals and the Von Neumann Ergodic Theorem with Continuous Time Научная публикация
Журнал |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Вых. Данные | Год: 2020, Том: 251, Номер: 1, Страницы: 111-118 Страниц : 8 DOI: 10.1007/s10958-020-05070-y | ||
Авторы |
|
||
Организации |
|
Реферат:
The Fejér integrals for finite measures on the real line and the norms of the deviations from the limit in the von Neumann ergodic theorem are calculating, in fact, with the same formulas (by integrating of the Fejér kernels). Thus this ergodic theorem is a statement about the asymptotic of the growth of the Fejér integrals at zero point of the spectral measure of corresponding dynamical system. It gives a possibility to rework well-known estimates of convergence rates in the von Neumann ergodic theorem into the estimates of the Fejér integrals at a point for finite measures: for example, natural criteria of polynomial growth and polynomial decay of these integrals are obtained. And vice versa, numerous known estimates of the deviations of Fejér integrals at a point allow to obtain new estimates of convergence rates in this ergodic theorem.
Библиографическая ссылка:
Kachurovskii A.G.
The Fejér Integrals and the Von Neumann Ergodic Theorem with Continuous Time
Journal of Mathematical Sciences (United States). 2020. V.251. N1. P.111-118. DOI: 10.1007/s10958-020-05070-y Scopus РИНЦ OpenAlex
The Fejér Integrals and the Von Neumann Ergodic Theorem with Continuous Time
Journal of Mathematical Sciences (United States). 2020. V.251. N1. P.111-118. DOI: 10.1007/s10958-020-05070-y Scopus РИНЦ OpenAlex
Оригинальная:
Качуровский А.Г.
Интегралы Фейера и эргодическая теорема фон Неймана с непрерывным временем
Записки научных семинаров ПОМИ. 2018. Т.474. С.171-182. MathNet
Интегралы Фейера и эргодическая теорема фон Неймана с непрерывным временем
Записки научных семинаров ПОМИ. 2018. Т.474. С.171-182. MathNet
Идентификаторы БД:
Scopus: | 2-s2.0-85092526154 |
РИНЦ: | 45257522 |
OpenAlex: | W3093395746 |