Sciact
  • EN
  • RU

Matrices uniquely determined by their lonesums Научная публикация

Журнал Linear Algebra and Its Applications
ISSN: 0024-3795
Вых. Данные Год: 2013, Том: 438, Номер: 7, Страницы: 3107-3123 Страниц : 17 DOI: 10.1016/j.laa.2012.11.027
Ключевые слова Poly-Bernoulli numbers, Lonesum matrices, q-Ary matrices, Forbidden patterns, Strongly lonesum matrices, Weakly lonesum matrices
Авторы Kim H.K. 1 , Krotov D.S. 2,3 , Lee J.Y. 1
Организации
1 Department of Mathematics, POSTECH, Pohang 790-784, Republic of Korea
2 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk 630090, Russia
3 Mechanics and Mathematics Department, Novosibirsk State University, Russia

Реферат: A matrix is lonesum if it can be uniquely reconstructed from its row and column sums. Brewbaker computed the number of m×n binary lonesum matrices. Kaneko defined the poly-Bernoulli numbers of an integer index, and showed that the number of m×n binary lonesum matrices is equal to the mth poly-Bernoulli number of index -n. In this paper, we are interested in q-ary lonesum matrices. There are two types of lonesumness for q-ary matrices, namely strongly and weakly lonesum. We first study strongly lonesum matrices: We compute the number of m×n q-ary strongly lonesum matrices, and provide a generalization of Kaneko’s formulas by deriving the generating function for the number of m×n q-ary strongly lonesum matrices. Next, we study weakly lonesum matrices: We show that the number of forbidden patterns for q-ary weakly lonesum matrices is infinite if q⩾5, and construct some forbidden patterns for q=3,4. We also suggest an open problem related to ternary and quaternary weakly lonesum matrices.
Библиографическая ссылка: Kim H.K. , Krotov D.S. , Lee J.Y.
Matrices uniquely determined by their lonesums
Linear Algebra and Its Applications. 2013. V.438. N7. P.3107-3123. DOI: 10.1016/j.laa.2012.11.027 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 2 нояб. 2012 г.
Принята к публикации: 21 нояб. 2012 г.
Опубликована online: 5 янв. 2013 г.
Опубликована в печати: 1 апр. 2013 г.
Идентификаторы БД:
Web of science: WOS:000315830200017
Scopus: 2-s2.0-84873742671
РИНЦ: 20433728
OpenAlex: W1949430587
Цитирование в БД:
БД Цитирований
Web of science 4
Scopus 4
РИНЦ 3
OpenAlex 10
Альметрики: