Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties Научная публикация
Журнал |
Pattern Recognition
ISSN: 0031-3203 |
||||||
---|---|---|---|---|---|---|---|
Вых. Данные | Год: 2017, Том: 63, Страницы: 427-436 Страниц : 10 DOI: 10.1016/j.patcog.2016.10.017 | ||||||
Ключевые слова | Cluster validity index; Co-association matrix; Ensemble size; Error bound; Hyperspectral image segmentation; Latent variable model; Weighted clustering ensemble | ||||||
Авторы |
|
||||||
Организации |
|
Реферат:
We consider an approach to ensemble clustering based on weighted co-association matrices, where the weights are determined with some evaluation functions. Using a latent variable model of clustering ensemble, it is proved that, under certain assumptions, the clustering quality is improved with an increase in the ensemble size and the expectation of evaluation function. Analytical dependencies between the ensemble size and quality estimates are derived. Theoretical results are supported with numerical examples using Monte-Carlo modeling and segmentation of a real hyperspectral image under presence of noise channels. © 2016 Elsevier Ltd
Библиографическая ссылка:
Berikov V.
, Pestunov I.
Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties
Pattern Recognition. 2017. V.63. P.427-436. DOI: 10.1016/j.patcog.2016.10.017 WOS Scopus OpenAlex
Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties
Pattern Recognition. 2017. V.63. P.427-436. DOI: 10.1016/j.patcog.2016.10.017 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: | WOS:000389785900034 |
Scopus: | 2-s2.0-84998679702 |
OpenAlex: | W2538920018 |