Sciact
  • EN
  • RU

Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties Научная публикация

Журнал Pattern Recognition
ISSN: 0031-3203
Вых. Данные Год: 2017, Том: 63, Страницы: 427-436 Страниц : 10 DOI: 10.1016/j.patcog.2016.10.017
Ключевые слова Cluster validity index; Co-association matrix; Ensemble size; Error bound; Hyperspectral image segmentation; Latent variable model; Weighted clustering ensemble
Авторы Berikov V. 1,2 , Pestunov I. 2,3
Организации
1 Sobolev Institute of Mathematics SB RAS, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, Novosibirsk, 630090, Russian Federation
3 Institute of Computational Technologies SB RAS, Novosibirsk, 630090, Russian Federation

Реферат: We consider an approach to ensemble clustering based on weighted co-association matrices, where the weights are determined with some evaluation functions. Using a latent variable model of clustering ensemble, it is proved that, under certain assumptions, the clustering quality is improved with an increase in the ensemble size and the expectation of evaluation function. Analytical dependencies between the ensemble size and quality estimates are derived. Theoretical results are supported with numerical examples using Monte-Carlo modeling and segmentation of a real hyperspectral image under presence of noise channels. © 2016 Elsevier Ltd
Библиографическая ссылка: Berikov V. , Pestunov I.
Ensemble clustering based on weighted co-association matrices: Error bound and convergence properties
Pattern Recognition. 2017. V.63. P.427-436. DOI: 10.1016/j.patcog.2016.10.017 WOS Scopus OpenAlex
Идентификаторы БД:
Web of science: WOS:000389785900034
Scopus: 2-s2.0-84998679702
OpenAlex: W2538920018
Цитирование в БД:
БД Цитирований
Scopus 45
OpenAlex 38
Web of science 34
Альметрики: