Sciact
  • EN
  • RU

The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 6, Pages: 1094-1099 Pages count : 6 DOI: 10.1134/S0037446618060125
Tags locally compact group, homogeneous space, amenability, N-function, Orlicz space, Δ2-condition
Authors Kopylov Yaroslav Anatolʹevich 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Abstract: We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).
Cite: Kopylov Y.A.
The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces
Siberian Mathematical Journal. 2018. V.59. N6. P.1094-1099. DOI: 10.1134/S0037446618060125 WOS Scopus OpenAlex
Original: Копылов Я.А.
Критерий Рао–Райтера аменабельности однородных пространств
Сибирский математический журнал. 2018. Т.59. №6. С.1375-1382. DOI: 10.17377/smzh.2018.59.612 РИНЦ
Dates:
Submitted: Nov 14, 2017
Published online: Dec 26, 2018
Identifiers:
Web of science: WOS:000454441000012
Scopus: 2-s2.0-85059771141
OpenAlex: W2905649001
Citing: Пока нет цитирований
Altmetrics: