Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems Научная публикация
Журнал |
Transactions of the Moscow Mathematical Society
ISSN: 0077-1554 , E-ISSN: 1547-738X |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2016, Том: 77, Страницы: 1-53 Страниц : 53 DOI: 10.1090/mosc/256 | ||||
Ключевые слова | Anosov system; Billiard; Convergence rates in ergodic theorems; Correlation decay; Large deviation decay | ||||
Авторы |
|
||||
Организации |
|
Реферат:
We present estimates (which are necessarily spectral) of the rate of convergence in the von Neumann ergodic theorem in terms of the singularity at zero of the spectral measure of the function to be averaged with respect to the corresponding dynamical system as well as in terms of the decay rate of the correlations (i.e., the Fourier coefficients of this measure). Estimates of the rate of convergence in the Birkhoff ergodic theorem are given in terms of the rate of convergence in the von Neumann ergodic theorem as well as in terms of the decay rate of the large deviation probabilities. We give estimates of the rate of convergence in both ergodic theorems for some classes of dynamical systems popular in applications, including some well-known billiards and Anosov systems.
Библиографическая ссылка:
Kachurovskii A.G.
, Podvigin I.V.
Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems
Transactions of the Moscow Mathematical Society. 2016. V.77. P.1-53. DOI: 10.1090/mosc/256 Scopus РИНЦ OpenAlex
Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems
Transactions of the Moscow Mathematical Society. 2016. V.77. P.1-53. DOI: 10.1090/mosc/256 Scopus РИНЦ OpenAlex
Оригинальная:
Качуровский А.Г.
, Подвигин И.В.
Оценки скоростей сходимости в эргодических теоремах фон Неймана и Биркгофа
Труды Московского математического общества. 2016. Т.77. №1. С.1-66. РИНЦ MathNet
Оценки скоростей сходимости в эргодических теоремах фон Неймана и Биркгофа
Труды Московского математического общества. 2016. Т.77. №1. С.1-66. РИНЦ MathNet
Идентификаторы БД:
Scopus: | 2-s2.0-85001930550 |
РИНЦ: | 29463820 |
OpenAlex: | W2558128491 |