Sciact
  • EN
  • RU

On the binary codes with parameters of triply-shortened 1-perfect codes Научная публикация

Журнал Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Вых. Данные Год: 2012, Том: 64, Номер: 3, Страницы: 275-283 Страниц : 9 DOI: 10.1007/s10623-011-9574-1
Ключевые слова Coding theory, Hamming code, Extended code, 1-perfect code, Triply-shortened 1-perfect code, Equitable partition, Perfect coloring, Weight distribution, Distance distribution
Авторы Krotov D.S. 1,2
Организации
1 Sobolev Institute of Mathematics, pr. Akademika Koptyuga 4, Novosibirsk 630090, Russia
2 Mechanics and Mathematics Department, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia

Реферат: We study properties of binary codes with parameters close to the parameters of 1-perfect codes. An arbitrary binary $(n=2^m-3,2^{n-m-1},4)$ code $C$, i.e., a code with parameters of a triply-shortened extended Hamming code, is a cell of an equitable partition of the $n$-cube into six cells. An arbitrary binary $(n=2^m-4,2^{n-m},3)$ code $D$, i.e., a code with parameters of a triply-shortened Hamming code, is a cell of an equitable family (but not a partition) with six cells. As a corollary, the codes $C$ and $D$ are completely semiregular; i.e., the weight distribution of such codes depends only on the minimal and maximal codeword weights and the code parameters. Moreover, if $D$ is self-complementary, then it is completely regular. As an intermediate result, we prove, in terms of distance distributions, a general criterion for a partition of the vertices of a graph (from rather general class of graphs, including the distance-regular graphs) to be equitable.
Библиографическая ссылка: Krotov D.S.
On the binary codes with parameters of triply-shortened 1-perfect codes
Designs, Codes and Cryptography. 2012. V.64. N3. P.275-283. DOI: 10.1007/s10623-011-9574-1 WOS Scopus РИНЦ OpenAlex
Даты:
Поступила в редакцию: 16 мар. 2011 г.
Принята к публикации: 29 сент. 2011 г.
Опубликована online: 13 окт. 2011 г.
Идентификаторы БД:
Web of science: WOS:000305520100005
Scopus: 2-s2.0-84863782397
РИНЦ: 23985142
OpenAlex: W3100598789
Цитирование в БД:
БД Цитирований
Web of science 8
Scopus 10
РИНЦ 5
OpenAlex 15
Альметрики: