Sciact
  • EN
  • RU

On the number of n-ary quasigroups of finite order Full article

Journal Discrete Mathematics and Applications
ISSN: 0924-9265 , E-ISSN: 1569-3929
Output data Year: 2011, Volume: 21, Number: 5-6, Pages: 575-585 Pages count : 11 DOI: 10.1515/dma.2011.035
Authors Potapov V.N. 1 , Krotov D.S. 1
Affiliations
1 Sobolev Institute of Mathematics

Abstract: Let $Q(n,k)$ be the number of $n$-ary quasigroups of order $k$. We derive a recurrent formula for $Q(n,k)$. We prove that for all $n≥2$ and $k≥5$ the following inequalities hold: $$ ((k−3)/2)^{n/2}((k−1)/2)^{n/2} < log_2 Q(n,k) ≤ c_k(k−2)^n, $$ where $c_k$ does not depend on $n$. So, the upper asymptotic bound for $Q(n,k)$ is improved for any $k≥5$ and the lower bound is improved for odd $k≥7$.
Cite: Potapov V.N. , Krotov D.S.
On the number of n-ary quasigroups of finite order
Discrete Mathematics and Applications. 2011. V.21. N5-6. P.575-585. DOI: 10.1515/dma.2011.035 WOS Scopus РИНЦ OpenAlex
Original: Потапов В.Н. , Кротов Д.С.
О числе n-арных квазигрупп конечного порядка
Дискретная математика. 2012. Т.24. №1. С.60-69. DOI: 10.4213/dm1172 РИНЦ OpenAlex
Dates:
Submitted: Dec 2, 2009
Identifiers:
Web of science: WOS:000218060300004
Scopus: 2-s2.0-84996538446
Elibrary: 28262303
OpenAlex: W2963258276
Citing:
DB Citing
Web of science 11
Scopus 14
OpenAlex 14
Altmetrics: