Semi-supervised classification using multiple clustering and low-rank matrix operations Научная публикация
Журнал |
Lecture Notes in Computer Science
ISSN: 0302-9743 , E-ISSN: 1611-3349 |
||||
---|---|---|---|---|---|
Вых. Данные | Год: 2019, Том: 11548 LNCS, Страницы: 529-540 Страниц : 12 DOI: 10.1007/978-3-030-22629-9_37 | ||||
Ключевые слова | Cluster ensemble; Co-association matrix; Low-rank matrix decomposition; Regularization; Semi-supervised classification | ||||
Авторы |
|
||||
Организации |
|
Реферат:
This paper proposes a semi-supervised classification method which combines machine learning regularization framework and cluster ensemble approach. We use the low-rank decomposition of the co-association matrix of the ensemble to significantly speed up calculations and save memory. Numerical experiments using Monte Carlo approach demonstrate the efficiency of the proposed method. © Springer Nature Switzerland AG 2019.
Библиографическая ссылка:
Berikov V.
Semi-supervised classification using multiple clustering and low-rank matrix operations
Lecture Notes in Computer Science. 2019. V.11548 LNCS. P.529-540. DOI: 10.1007/978-3-030-22629-9_37 Scopus OpenAlex
Semi-supervised classification using multiple clustering and low-rank matrix operations
Lecture Notes in Computer Science. 2019. V.11548 LNCS. P.529-540. DOI: 10.1007/978-3-030-22629-9_37 Scopus OpenAlex
Идентификаторы БД:
Scopus: | 2-s2.0-85067677189 |
OpenAlex: | W2950355158 |