Sciact
  • EN
  • RU

A quadratic part of a bent function can be any Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2022, Volume: 19, Number: 1, Pages: 342-347 Pages count : 6 DOI: 10.33048/semi.2022.19.029
Tags bent function; Boolean function; homogeneous function; linear function; quadratic function
Authors Tokareva Natalia Nikolaevna 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: Boolean functions in n variables that are on the maximal possible Hamming distance from all affine Boolean functions in n variables are called bent functions (n is even). They are intensively studied since sixties of XX century in relation to applications in cryptography and discrete mathematics. Often, bent functions are represented in their algebraic normal form (ANF). It is well known that the linear part of ANF of a bent function can be arbitrary. In this note we prove that a quadratic part of a bent function can be arbitrary too.
Cite: Tokareva N.N.
A quadratic part of a bent function can be any
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.342-347. DOI: 10.33048/semi.2022.19.029 WOS Scopus РИНЦ
Identifiers:
Web of science: WOS:000886649700007
Scopus: 2-s2.0-85134549309
Elibrary: 49384640
Citing:
DB Citing
Scopus 1
Web of science 1
Elibrary 1
Altmetrics: