A quadratic part of a bent function can be any Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2022, Volume: 19, Number: 1, Pages: 342-347 Pages count : 6 DOI: 10.33048/semi.2022.19.029 | ||||
Tags | bent function; Boolean function; homogeneous function; linear function; quadratic function | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
Boolean functions in n variables that are on the maximal possible Hamming distance from all affine Boolean functions in n variables are called bent functions (n is even). They are intensively studied since sixties of XX century in relation to applications in cryptography and discrete mathematics. Often, bent functions are represented in their algebraic normal form (ANF). It is well known that the linear part of ANF of a bent function can be arbitrary. In this note we prove that a quadratic part of a bent function can be arbitrary too.
Cite:
Tokareva N.N.
A quadratic part of a bent function can be any
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.342-347. DOI: 10.33048/semi.2022.19.029 WOS Scopus РИНЦ
A quadratic part of a bent function can be any
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2022. V.19. N1. P.342-347. DOI: 10.33048/semi.2022.19.029 WOS Scopus РИНЦ
Identifiers:
Web of science: | WOS:000886649700007 |
Scopus: | 2-s2.0-85134549309 |
Elibrary: | 49384640 |